题目内容
已知数列{an}中,a1=1,an+1=1-
,数列{bn}满足bn=
(n∈N*).
(1)求数列{bn}的通项公式;
(2)证明:
+
+…+
<7.
| 4 |
| an+3 |
| 1 |
| an+1 |
(1)求数列{bn}的通项公式;
(2)证明:
| 1 |
| b12 |
| 1 |
| b22 |
| 1 |
| bn2 |
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1+1=2-
=
,从而得到数列{bn}是首项为
,公差为
的等差数列,由此能求出bn=
.
(2)当n=1和n=2时,验证不等式成立,当n≥3时,
=
<
=4(
-
),由此裂项求和法能证明
+
+…+
<7.
| 4 |
| an+3 |
| 2an+2 |
| an+3 |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
(2)当n=1和n=2时,验证不等式成立,当n≥3时,
| 1 |
| bn2 |
| 4 |
| n2 |
| 4 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| b12 |
| 1 |
| b22 |
| 1 |
| bn2 |
解答:
(1)解:∵数列{an}中,a1=1,an+1=1-
,
∴an+1+1=2-
=
,…(2分)
又由bn=
,
则bn+1=
=
=
=
+
=bn+
,…(6分)
又b1=
,所以数列{bn}是首项为
,公差为
的等差数列,
∴bn=
.…(8分)
(2)当n=1时,左边=
=4<7,不等式成立;…(9分)
当n=2时,左边=
+
=4+1=5<7,不等式成立; …(10分)
当n≥3时,
=
<
=4(
-
),
左边=
+
+…+
<4+1+4(
-
+
-
+…+
-
)
=5+4(
-
)=7-
<7不等式成立,
∴
+
+…+
<7.…(14分)
| 4 |
| an+3 |
∴an+1+1=2-
| 4 |
| an+3 |
| 2an+2 |
| an+3 |
又由bn=
| 1 |
| an+1 |
则bn+1=
| 1 |
| an+1+1 |
| an+3 |
| 2an+2 |
| (an+1)+2 |
| 2(an+1) |
=
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2 |
又b1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| n |
| 2 |
(2)当n=1时,左边=
| 1 |
| b12 |
当n=2时,左边=
| 1 |
| b12 |
| 1 |
| b22 |
当n≥3时,
| 1 |
| bn2 |
| 4 |
| n2 |
| 4 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
左边=
| 1 |
| b12 |
| 1 |
| b22 |
| 1 |
| bn2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=5+4(
| 1 |
| 2 |
| 1 |
| n |
| 4 |
| n |
∴
| 1 |
| b12 |
| 1 |
| b22 |
| 1 |
| bn2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目