题目内容
在平面直角坐标系中,已知角α的终边经过点P(a,a-3),且cosα=
,则a=( )
| ||
| 5 |
| A、1 | ||
B、
| ||
C、1或
| ||
| D、1或3 |
考点:任意角的三角函数的定义
专题:三角函数的求值
分析:利用三角函数的定义,直接列出关系式求出a的值.
解答:
解:角α的终边经过点P(a,a-3),且cosα=
,
所以a>0,并且
=
,
解得a=1.
故选:A.
| ||
| 5 |
所以a>0,并且
| a | ||
|
| ||
| 5 |
解得a=1.
故选:A.
点评:本题考查三角函数的定义的应用,考查计算能力.
练习册系列答案
相关题目
△ABC中sin2A-sin2B-sin2C≥
sinBsinC时,角A的取值范围是( )
| 3 |
A、(0,
| ||
B、[
| ||
C、[
| ||
D、[0,
|
函数f(x)=
的定义域为( )
log
|
| A、(-∞,1] | ||
| B、[1,+∞) | ||
C、(
| ||
D、(
|
二项式(2x+
)7的展开式中
的系数是( )
| 1 |
| x |
| 1 |
| x3 |
| A、42 | B、168 | C、84 | D、21 |
某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )

| A、f(x)=sinx | ||
| B、f(x)=cosx | ||
C、f(x)=
| ||
| D、f(x)=x2 |
已知△ABC中,a、b分别是角A、B所对的边,且a=x(x>0),b=2,A=60°,若三角形有两解,则x的取值范围是( )
A、x>
| ||
| B、0<x<2 | ||
C、
| ||
D、
|
将函数f(x)=sinx+cosx的图象向左平移φ(φ>0)个单位长度,所得图象关于原点对称,则φ的最小值为( )
A、-
| ||
B、
| ||
C、
| ||
D、
|
极坐标方程ρcos2θ=4sin θ所表示的曲线是( )
| A、一条直线 | B、一个圆 |
| C、一条抛物线 | D、一条双曲线 |