题目内容
已知a>0,b>0,化简:
(1)5a-1+5a+5a+1;
(2)(a
-b
)÷(a
-b
).
(1)5a-1+5a+5a+1;
(2)(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:利用分数指数幂的运算法则直接计算.
解答:
解:(1)∵a>0,b>0,
∴5a-1+5a+5a+1
=
•5a+5a+5•5a
=(
+1+5)•5a
=
•5a
=31•5a-1.
(2)∵a>0,b>0,
∴(a
-b
)÷(a
-b
)
=(a
-b
)÷(a
-b
)(a
+b
)
=
.
∴5a-1+5a+5a+1
=
| 1 |
| 5 |
=(
| 1 |
| 5 |
=
| 31 |
| 5 |
=31•5a-1.
(2)∵a>0,b>0,
∴(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
=(a
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 | ||||
|
点评:本题考查分数指数幂的运算法则的应用,是基础题,解题时要认真解答,避免出现计算上的低级错误.
练习册系列答案
相关题目