题目内容
17.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2017)=( )(其中e为自然对数的底)| A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
分析 根据图象的平移可知y=f(x)的图象关于(0,0)点对称,可得函数为奇函数,由题意可知当x≥0时,函数为周期为2的周期函数,可得f(2016)+f(-2017)=f(0)-f(1),求解即可
解答 解:∵y=f(x-1)的图象关于(1,0)点对称,
∴y=f(x)的图象关于(0,0)点对称,
∴函数为奇函数,
∵当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,
∴f(2016)+f(-2017)
=f(2016)-f(2017)
=f(0)-f(1)
=0-(e-1)
=1-e.
故选:A.
点评 本题主要考查了函数图象的平移,奇函数的性质和函数的周期性.难点是对知识的综合应用.
练习册系列答案
相关题目
2.在长方体ABCD-A1B1C1D1中,M为AC与BD的交点.若$\overrightarrow{{A_1}{B_1}}$=$\overrightarrow a$,$\overrightarrow{{A_1}{D_1}}$=$\overrightarrow b$,$\overrightarrow{{A_1}A}$=$\overrightarrow c$,则下列向量中与$\overrightarrow{{A_1}M}$相等的向量是( )
| A. | -$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | B. | $\frac{1}{2}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | C. | $\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ | D. | -$\frac{1}{2}$$\overrightarrow a$-$\frac{1}{2}$$\overrightarrow b$+$\overrightarrow c$ |