题目内容

14.已知{an}为等比数列,Sn是它的前n项和.若${a_3}{a_5}=\frac{1}{4}{a_1}$,且a4与a7的等差中项为$\frac{9}{8}$,则S5为31.

分析 利用等比数列的通项公式与求和公式即可得出.

解答 解:设等比数列{an}的公比为q,∵a4与a7的等差中项为$\frac{9}{8}$,
∴a4+a7=2×$\frac{9}{8}$,
∴${a}_{1}({q}^{3}+{q}^{6})$=$\frac{9}{4}$,
∵${a_3}{a_5}=\frac{1}{4}{a_1}$,∴${a}_{1}^{2}{q}^{6}$=$\frac{1}{4}{a}_{1}$,
联立解得:q=$\frac{1}{2}$,a1=16.
∴S5=$\frac{16(1-\frac{1}{{2}^{5}})}{1-\frac{1}{2}}$=31.
故答案为:31.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网