题目内容

5.如图所示,四棱锥V-ABCD的底面为边长等于2cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4cm,求这个正四棱锥的体积.

分析 连AC、BD相交于点O,连VO,求出VO,则VV-ABCD=$\frac{1}{3}$SABCD•VO,由此能求出这个正四棱锥的体积.

解答 解:连AC、BD相交于点O,连VO,
∵AB=BC=2 cm,
∴在正方形ABCD中,CO=$\sqrt{2}$ cm,
在直角三角形VOC中,VO=$\sqrt{14}$ cm,
∴VV-ABCD=$\frac{1}{3}$SABCD•VO=$\frac{1}{3}$×4×$\sqrt{14}$=$\frac{4}{3}$$\sqrt{14}$(cm3).
故这个正四棱锥的体积为$\frac{4}{3}$$\sqrt{14}$ cm3

点评 本题考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网