题目内容
7.| A. | y=-4sin($\frac{πx}{8}+\frac{π}{4}$) | B. | y=4sin($\frac{x}{8}-\frac{π}{4}$) | C. | y=-4sin($\frac{x}{8}-\frac{π}{4}$) | D. | y=4sin($\frac{x}{8}+\frac{π}{4}$) |
分析 由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求φ,可得函数的解析式.
解答 解:根据函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象,可得A=4,$\frac{1}{2}•\frac{2π}{ω}$=6+2,
∴ω=$\frac{π}{8}$,再结合$\frac{π}{8}$•(-2)+φ=kπ,k∈Z,可得φ=$\frac{π}{4}$,∴函数的解析式为y=-4sin($\frac{πx}{8}$+$\frac{π}{4}$),
故选:A.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
练习册系列答案
相关题目
12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是( )
| A. | f(1)<ef(0),f(2)<e2f(0) | B. | f(1)>ef(0),f(2)<e2f(0) | C. | f(1)<ef(0),f(2)>e2f(0) | D. | f(1)>ef(0),f(2)>e2f(0) |
19.设O为△ABC的外心,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,则M是△ABC的( )
| A. | 重心(三条中线交点) | B. | 内心(三条角平分线交点) | ||
| C. | 垂心(三条高线交点) | D. | 外心(三边中垂线交点) |
17.已知函数$f(x)=a{x^3}-\frac{3}{2}{x^2}+1(a>0)$在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上有f(x)>0恒成立,则a的取值范围为( )
| A. | (0,2] | B. | [2,+∞) | C. | (0,5) | D. | (2,5] |