题目内容
12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是( )| A. | f(1)<ef(0),f(2)<e2f(0) | B. | f(1)>ef(0),f(2)<e2f(0) | C. | f(1)<ef(0),f(2)>e2f(0) | D. | f(1)>ef(0),f(2)>e2f(0) |
分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,求出函数g(x)的导数,判断函数的单调性,从而求出答案.
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
故g(x)在R递增,
故g(1)>g(0),g(2)>g(0),
即f(1)>ef(0),f(2)>e2f(0),
故选:D.
点评 本题考查了函数的单调性、导数的应用,构造函数g(x)=$\frac{f(x)}{{e}^{x}}$是解题的关键,本题是一道中档题.
练习册系列答案
相关题目
7.
函数y=Asin(ωx+φ) (ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为( )
| A. | y=-4sin($\frac{πx}{8}+\frac{π}{4}$) | B. | y=4sin($\frac{x}{8}-\frac{π}{4}$) | C. | y=-4sin($\frac{x}{8}-\frac{π}{4}$) | D. | y=4sin($\frac{x}{8}+\frac{π}{4}$) |
17.△ABC的三个内角为A、B、C,若$\frac{{sinA+\sqrt{3}cosA}}{{cosA-\sqrt{3}sinA}}=tan\frac{7π}{12}$,则sin2B+2cosC的最大值为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
4.已知函数 f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数g(x)=f($\frac{3π}{4}$-x)是( )
| A. | 偶函数且它的图象关于点 (π,0)对称 | |
| B. | 奇函数且它的图象关于点 (π,0)对称 | |
| C. | 奇函数且它的图象关于点($\frac{3π}{2}$,0)对称 | |
| D. | 偶函数且它的图象关于点($\frac{3π}{2}$,0)对称 |
1.若直线x+2y+a=0过圆x2+y2+2x-4y+1=0的圆心,则实数a的值为( )
| A. | -1 | B. | 1 | C. | -3 | D. | 3 |