题目内容

19.设O为△ABC的外心,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,则M是△ABC的(  )
A.重心(三条中线交点)B.内心(三条角平分线交点)
C.垂心(三条高线交点)D.外心(三边中垂线交点)

分析 设AB的中点为D,根据题意可得OD⊥AB.由题中向量的等式化简得CM⊥AB,即CM在AB边的高线上.同理可证出AM在BC边的高线上,故可得M是三角形ABC的垂心.

解答 解:在△ABC中,O为外心,可得OA=OB=OC,
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OM}$-$\overrightarrow{OC}$
设AB的中点为D,则OD⊥AB,$\overrightarrow{CM}$=2$\overrightarrow{OD}$,
∴CM⊥AB,可得CM在AB边的高线上.
同理可证,AM在BC边的高线上,
故M是三角形ABC两高线的交点,可得M是三角形ABC的垂心,
故选:C

点评 本题给出三角形中的向量等式,判断点P是三角形的哪一个心.着重考查了向量加法法则、三角形的外接圆性质和三角形“五心”的判断等知识点,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网