题目内容

设f(x)=asin(πx+α)+bcos(πx+β)+7,α、β均为实数,若f(2013)=6,求f(2014)之值.
考点:运用诱导公式化简求值,函数的值
专题:函数的性质及应用,三角函数的求值
分析:由已知得f(2013)=-asinα-bcosβ+7=6,从而asinα+bcosβ=1,由此能求出f(2014)=asinα+bcosβ+7=8.
解答: 解:∵f(x)=asin(πx+α)+bcos(πx+β)+7,α、β均为实数,
∴f(2013)=-asinα-bcosβ+7=6,
∴asinα+bcosβ=1,
∴f(2014)=asinα+bcosβ+7=8.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意三角函数的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网