题目内容
10.在△ABC,内角A,B,C所对的边分别为a,b,c,已知c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{{\sqrt{7}}}{4}$,D是线段AC上一点,且${S_{△BCD}}=\frac{2}{3}$,则$\frac{AD}{AC}$=( )| A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{10}{9}$ |
分析 由正弦定理,余弦定理化简已知等式可求ac=4,由已知利用同角三角函数基本关系式可求sinB的值,进而利用三角形面积公式可求S△ABC,进而利用比例的性质即可得解.
解答
解:∵c2sinAcosA+a2sinCcosC=4sinB,
∴ac2•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$+ca2•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=4b,
∴解得:ac=4,
cosB=$\frac{\sqrt{7}}{4}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{3}{2}$,
∵$\frac{CD}{AC}$=$\frac{{S}_{△BCD}}{{S}_{△ABC}}$=$\frac{4}{9}$,
∴$\frac{AD}{AC}$=$\frac{5}{9}$.
故选:B.
点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式,比例的性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
练习册系列答案
相关题目
15.在等差数列{an}中,已知前10项的和等于前5项的和,若a2+ak=0,则k的值等于( )
| A. | 14 | B. | 12 | C. | 8 | D. | 6 |