题目内容
已知数列{an}满足a1=4,an=4-
(n>1),其中n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足cn=
,数列{cn}的前n项的乘积为Tn,试证明:2012T2011>
.
| 4 |
| an-1 |
(1)求数列{an}的通项公式;
(2)设数列{bn}满足cn=
| 4 |
| anan+1 |
| 1 |
| 2013 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出
=
+
,由此能求出an=
+2.
(2)由cn=
=
=
,得到Tn=
×
×
×
×…×
=
,由此能证明2012T2011>
.
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| an-1-2 |
| 2 |
| n |
(2)由cn=
| 4 |
| anan+1 |
| 4 | ||||
(
|
| n |
| n+2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| 5 |
| 4 |
| 6 |
| n |
| n+2 |
| 2 |
| (n+1)(n+2) |
| 1 |
| 2013 |
解答:
解:(1)∵a1=4,an=4-
(n>1),
an-2=2-
=2•
,
∴
=
+
,
又
=
,
∴{
}是首项为
,公差为
的等差数列,
∴
=
,∴an=
+2.
(2)∵cn=
=
=
,
∴Tn=
×
×
×
×…×
=
,
∴2012T2011=2012×
=
>
.
∴2012T2011>
.
| 4 |
| an-1 |
an-2=2-
| 4 |
| an-1 |
| an-1-2 |
| an-1 |
∴
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| an-1-2 |
又
| 1 |
| a1-2 |
| 1 |
| 2 |
∴{
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| an-2 |
| n |
| 2 |
| 2 |
| n |
(2)∵cn=
| 4 |
| anan+1 |
| 4 | ||||
(
|
| n |
| n+2 |
∴Tn=
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| 5 |
| 4 |
| 6 |
| n |
| n+2 |
| 2 |
| (n+1)(n+2) |
∴2012T2011=2012×
| 2 |
| 2012×2013 |
| 2 |
| 2013 |
| 1 |
| 2013 |
∴2012T2011>
| 1 |
| 2013 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,是中档题.
练习册系列答案
相关题目