题目内容
已知数列{an}中,a1=1,
an+1=an+3n,求数列{an}的通项公式an.
| 1 |
| 3 |
考点:等差关系的确定,数列递推式
专题:计算题,等差数列与等比数列
分析:由
an+1=an+3n,得
=
+1,可判断{
}是以
=
为首项,1为公差的等差数列,由等差数列的通项公式可求
,进而可得an.
| 1 |
| 3 |
| an+1 |
| 3n+1 |
| an |
| 3n |
| an |
| 3n |
| a1 |
| 3 |
| 1 |
| 3 |
| an |
| 3n |
解答:
解:由
an+1=an+3n,得
=
+1,
∴{
}是以
=
为首项,1为公差的等差数列,∴
=
+(n-1)×1=n-
,
∴an=(n-
)•3n.
| 1 |
| 3 |
| an+1 |
| 3n+1 |
| an |
| 3n |
∴{
| an |
| 3n |
| a1 |
| 3 |
| 1 |
| 3 |
| an |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
∴an=(n-
| 2 |
| 3 |
点评:本题考查由数列递推式求数列通项,属中档题,形如知an+1=pan+qn求an,可两边同除以qn+1,构造特殊数列求解.
练习册系列答案
相关题目