题目内容

5.已知定义域为R的函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函数,f(1)=-$\frac{1}{3}$.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明.

分析 (1)根据函数的奇偶性求出b的值,根据f(1)的值,求出a即可;
(2)根据函数单调性的定义证明即可.

解答 解:(1)因为f(x)在定义域为R上是奇函数,所以f(0)=0,
即$\frac{b-1}{1+a}$=0,解得:b=1,
又由f(1)=-$\frac{1}{3}$,即$\frac{1-2}{2+a}$=-$\frac{1}{3}$,解得:a=1,
经检验b=1,a=1满足题意;                           
(2)证明:由(1)知f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$,任取x1,x2∈R,设x1<x2
 则f(x1)-f(x2)=$\frac{1{-2}^{{x}_{1}}}{1{+2}^{{x}_{1}}}$-$\frac{1{-2}^{{x}_{2}}}{1{+2}^{{x}_{2}}}$=$\frac{2{(2}^{{x}_{2}}{-2}^{{x}_{1}})}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$,
因为函数y=2x在R上是增函数且x1<x2
∴${2}^{{x}_{2}}$-${2}^{{x}_{1}}$>0
又(${2}^{{x}_{1}}$+1)(${2}^{{x}_{2}}$+1)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在R上为减函数.

点评 本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网