题目内容

对于函数y=f(x),部分x与y的对应关系如下表:
x123456789
y745813526
数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+x4的值为(  )
A、12B、14C、16D、18
考点:函数的值
专题:函数的性质及应用
分析:由已知得xn+1=f(xn),x1=2,x2=4,x3=8,x4=2,由此能求出x1+x2+x3+x4=2+4+8+2=16.
解答: 解:∵数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,
∴xn+1=f(xn),
所以x1=2,x2=4,x3=8,x4=2,
∴x1+x2+x3+x4=2+4+8+2=16.
故选:C.
点评:本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网