题目内容
正项数列{an}满足f(an)=
(an≠2),且{an}的前n项和Sn=
[3-
]2.
(Ⅰ)求证:{an}是等差数列;
(Ⅱ)若bn=
,求数列{bn}的前n项和Tn.
| 2 |
| 2-an |
| 1 |
| 4 |
| 2 |
| f(an) |
(Ⅰ)求证:{an}是等差数列;
(Ⅱ)若bn=
| an |
| 2n |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)利用an与Sn的关系求得an-an-1=2,由等差数列的定义可得数列{an}是首项为1,公差为2的等差数列;
(Ⅱ)由(Ⅰ)求得bn=
=
,利用错位相减法求得数列的和.
(Ⅱ)由(Ⅰ)求得bn=
| an |
| 2n |
| 2n-1 |
| 2n |
解答:
(Ⅰ)证明:∵f(an)=
(an≠2),Sn=
[3-
]2.
∴Sn=
[3-(2-an)]2=
(an+1)2.
当n=1时,由a1=
(a1+1)2,得a1=1,
当n≥2时,Sn-1=
(an-1+1)2,
由an=Sn-Sn-1=
(
-
+2an-2an-1),
整理得(an+an-1)(an-an-1-2)=0,
∴当n≥2时,由题意an>0,则an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列;
(Ⅱ)由(Ⅰ)可知{an}的通项公式为an=2n-1,
∴bn=
=
,
∴Tn=
+
+
+…+
,
Tn=
+
+
+…+
,
两式作差得
Tn=
+
+
+…+
-
,
∴
Tn=2×(
+
+
+…+
)-
-
=2×
-
-
=
-
,
∴Tn=3-
.
| 2 |
| 2-an |
| 1 |
| 4 |
| 2 |
| f(an) |
∴Sn=
| 1 |
| 4 |
| 1 |
| 4 |
当n=1时,由a1=
| 1 |
| 4 |
当n≥2时,Sn-1=
| 1 |
| 4 |
由an=Sn-Sn-1=
| 1 |
| 4 |
| a | 2 n |
| a | 2 n-1 |
整理得(an+an-1)(an-an-1-2)=0,
∴当n≥2时,由题意an>0,则an-an-1=2,
∴数列{an}是首项为1,公差为2的等差数列;
(Ⅱ)由(Ⅰ)可知{an}的通项公式为an=2n-1,
∴bn=
| an |
| 2n |
| 2n-1 |
| 2n |
∴Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 2n-1 |
| 2n+1 |
两式作差得
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
| 1 |
| 2 |
=2×
| ||||
1-
|
| 2n-1 |
| 2n+1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
点评:本题主要考查等差数列的定义及数列求和等知识,考查学生的运算能力,属中档题.
练习册系列答案
相关题目
定义由如图框图表示的运算,若f(x)=|x+2014|-|x-2014|,则输出y=( )

| A、0 | B、1 | C、2 | D、4 |
将函数y=sin2x的图象向右平移
个单位,那么所得的图象的函数解析式是( )
| π |
| 6 |
A、y=sin(2x-
| ||
B、y=sin(2x+
| ||
C、y=sin(2x-
| ||
D、y=sin(2x+
|