题目内容
2.双曲线x2-4y2=4的渐近线方程为( )| A. | $y=±\frac{1}{2}x$ | B. | y=±2x | C. | $y=±\frac{1}{4}x$ | D. | $y=±\frac{{\sqrt{5}}}{2}x$ |
分析 直接利用双曲线的简单性质下次渐近线方程即可.
解答 解:双曲线x2-4y2=4的渐近线方程为:y=$±\frac{1}{2}x$.
故选:A.
点评 本题考查双曲线的简单性质的应用,是基础题.
练习册系列答案
相关题目
12.在数列{an}中,a1=1且已知an+1=2an-3,则a4等于( )
| A. | 5 | B. | -5 | C. | -13 | D. | -29 |
10.已知两点A(-3,0),B(3,0),动点M满足|MA|-|MB|=4,则动点M的轨迹是( )
| A. | 椭圆 | B. | 双曲线 | C. | 双曲线的一支 | D. | 抛物线 |
17.设空间两个单位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)与向量$\overrightarrow{OC}$=(1,1,1)的夹角都等于$\frac{π}{4}$,则cos∠AOB=( )
| A. | $\frac{2-\sqrt{3}}{4}$ | B. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | C. | $\frac{2±\sqrt{3}}{4}$ | D. | $\frac{\sqrt{2}±\sqrt{6}}{4}$ |
7.已知z1=m+i,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$=-$\frac{1}{2}$,则实数m的值为( )
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
11.在某化学反应的中间阶段,压力保持不变,温度从1°变化到10°,反应结果如下表所示(x代表温度,y代表结果):
现算的$\sum_{i=1}^{10}$xi=55,$\sum_{i=1}^{10}$yi=123,$\sum_{i=1}^{10}$xiyi=844,$\sum_{i=1}^{10}$x2i=385.
(Ⅰ)以温度为横坐标,反应结果为纵坐标,画出散点图,并求化学反应的结果y对温度x的线性回归方程y=bx+a(精确到小数点后四位);
(Ⅱ)判断变量x与y之间是正相关还是负相关.
附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值,线性回归方程也可写为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| y | 3 | 5 | 7 | 10 | 11 | 14 | 15 | 17 | 20 | 21 |
(Ⅰ)以温度为横坐标,反应结果为纵坐标,画出散点图,并求化学反应的结果y对温度x的线性回归方程y=bx+a(精确到小数点后四位);
(Ⅱ)判断变量x与y之间是正相关还是负相关.
附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值,线性回归方程也可写为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.