题目内容
10.已知等差数列{an}的前10项和为165,a4=12,则a7=( )| A. | 14 | B. | 18 | C. | 21 | D. | 24 |
分析 由等差数列{an}性质可得:a1+a10=a4+a7,再利用等差数列的前n项和公式即可得出.
解答 解:由等差数列{an}性质可得:a1+a10=a4+a7,
∴S10=10•$\frac{{a}_{1}+{a}_{10}}{2}$=5(a4+a7)=5(12+a7)=165,
解得a7=21,
故选:C.
点评 本题考查了等差数列的性质与前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.已知a、b∈R,则“ab=1”是“直线“ax+y-l=0和直线x+by-1=0平行”的( )
| A. | 充分不必要条件 | B. | 充要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分又不必要条件 |
2.已知3sin2α=cosα,则sinα可以是( )
| A. | -$\frac{1}{6}$ | B. | $\frac{1}{6}$ | C. | $\frac{\sqrt{35}}{6}$ | D. | $\frac{1}{3}$ |
19.某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对A,B两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).
| 档次 人群 | 0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 |
| A类 | 20 | 50 | 20 | 10 |
| B类 | 50 | 30 | 10 | 10 |
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).