题目内容

若O为△ABC的内心,且满足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,则△ABC的形状为(  )
A、等腰三角形B、正三角形
C、直角三角形D、以上都不对
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的运算法则将等式中的向量
OA
OB
OC
用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.
解答: 解:∵(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,
∴(
OB
-
OC
)•[(
OB
-
OA
)+(
OC
-
OA
)]=0,
即(
OB
-
OC
)•(
AB
+
AC
)=0,
CB
•(
AB
+
AC
)=0,
AC
-
AB
)(
AC
+
AB
)=0,
AC
2
-
AB
2
=0,
|
AB
|=|
AC
|

∴△ABC为等腰三角形.
故选A.
点评:此题考查了三角形形状的判断,涉及的知识有:平面向量加减的平行四边形法则,平面向量的数量积运算,平面向量模的运算,以及等腰三角形的判定方法,熟练掌握平面向量的数量积运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网