题目内容
17.(1)设线段AF的长为m,将m表示为关于α的函数;
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.
分析 (1)由点A(-msinα,mcosα+$\frac{1}{4}$),代入抛物线的标准方程,即可将m表示为关于α的函数;
(2)由题意结合图形,把A、B、C、D四点的坐标分别用|AF|、|BF|、|CF|、|DF|和α表示,代入抛物线方程后最终求得|AF|、|BF|、|CF|、|DF|,对三角形面积化简整理,换元后利用配方法求面积的最小值.
解答
解:(1)点A(-msinα,mcosα+$\frac{1}{4}$),
∴mcosα+$\frac{1}{4}$=(-msinα)2,即m2sin2α-mcosα-$\frac{1}{4}$=0.
∵m>0,∴m=|AF|=$\frac{cosα+1}{2si{n}^{2}α}$;
(2)同理:|BF|=$\frac{1-sinα}{co{s}^{2}α}$,|DF|=$\frac{1-cosα}{2si{n}^{2}α}$,|CF|=$\frac{1+sinα}{2co{s}^{2}α}$.
“蝴蝶形图案”的面积S=S△AFB+S△CFD=$\frac{1-sinαcosα}{4(sinαcosα)^{2}}$,
令t=sinαcosα,t∈(0,$\frac{1}{2}$],
S=$\frac{1-t}{4{t}^{2}}$=$\frac{1}{4}$($\frac{1}{{t}^{2}}$-$\frac{1}{t}$),$\frac{1}{t}≥2$,∴$\frac{1}{t}$=2,Smin=$\frac{1}{2}$,此时$α=\frac{π}{4}$.
点评 本题考查了抛物线的标准方程及其性质、点直线与抛物线的关系、三角函数化简、换元法、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.点M(2,tan 300°)位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
8.经过圆x2-2x+y2=0的圆心且与直线x+2y=0平行的直线方程是( )
| A. | x+2y-1=0 | B. | x-2y-2=0 | C. | x-2y+1=0 | D. | x+2y+2=0 |
5.若$\left\{\begin{array}{l}{y≤2}\\{y≥x}\\{y≤a(x-1)}\end{array}\right.$,且z=x+y的最大值是2,则a=( )
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
12.D,C,B三点依次在底面同一直线上,DC=a,点A在底面上的射影为B.从C,D两点测得点A的仰角分别为β和α(α<β),则A点离底面的高度AB等于( )
| A. | $\frac{asinαsinβ}{sin(β-α)}$ | B. | $\frac{asinαcosβ}{sin(β-α)}$ | C. | $\frac{acosαsinβ}{sin(β-α)}$ | D. | $\frac{asinαsinβ}{cos(β-α)}$ |
9.下列命题中,是真命题的是( )
| A. | ?x0∈R,ex0≤0 | |
| B. | ?x∈R,2x>x2 | |
| C. | 已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1 | |
| D. | 已知a,b为实数,则ab>1是a>1且b>1 的必要不充分条件 |
7.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数,令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,则( )
| A. | b<a<c | B. | c<b<a | C. | a<b<c | D. | b<c<a |