题目内容
19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,c是半焦轴距,P是双曲线上异于顶点的点,满足ctan∠PF1F2=atan∠PF2F1,则双曲线的离心率e的取值范围是( )| A. | (1,1+$\sqrt{2}$) | B. | ($\sqrt{2}$,1+$\sqrt{2}$) | C. | (1+$\sqrt{2}$,1+$\sqrt{3}$) | D. | (1+$\sqrt{2}$,+∞) |
分析 由题意可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,设P(m,n)为双曲线的右支上一点,由F1(-c,0),F2(-c,0),运用直线的斜率公式和m>a,解不等式即可得到所求范围.
解答 解:由ctan∠PF1F2=atan∠PF2F1,
可得e=$\frac{c}{a}$=$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$,
设P(m,n)为双曲线的右支上一点,
由F1(-c,0),F2(c,0),
可得$\frac{tan∠P{F}_{2}{F}_{1}}{tan∠P{F}_{1}{F}_{2}}$=-$\frac{n}{m-c}$•$\frac{m+c}{n}$=-$\frac{m+c}{m-c}$=-1-$\frac{2c}{m-c}$,
由m>a可得-1-$\frac{2c}{m-c}$>-1+$\frac{-2c}{a-c}$=-1+$\frac{2e}{e-1}$,
即有e+1>$\frac{2e}{e-1}$,即e2-2e-1>0,解得e>1+$\sqrt{2}$.
故选:D.
点评 本题考查双曲线的离心率的范围,注意运用直线的斜率公式和双曲线的范围,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
9.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)与圆x2+y2=c2(c=$\sqrt{{a}^{2}+{b}^{2}}$)交A、B、C、D四点,若四边形ABCD是正方形,则双曲线的渐近线方程为( )
| A. | y=±$\sqrt{1+\sqrt{2}}$x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\sqrt{\sqrt{2}-1}$x |
7.已知F是双曲线C:x2-$\frac{{y}^{2}}{8}$=1的右焦点,若P是C的左支上一点,A(0,6$\sqrt{6}$)是y轴上一点,则△APF面积的最小值为6+9$\sqrt{6}$.
14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的$\frac{1}{4}$,则该双曲线的离心率为( )
| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{2\sqrt{3}}{3}$ |
8.以双曲线$\frac{{x}^{2}}{3}$-y2=1的左右焦点为焦点,离心率为$\frac{1}{2}$的椭圆的标准方程为( )
| A. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{12}$=1 |
9.阅读如图的程序框图,运行相应的程序,输出的结果为( )

| A. | -2 | B. | $\frac{1}{2}$ | C. | -1 | D. | 2 |