题目内容
求和:Sn=
+
+
+
+…+
.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 7 |
| 16 |
| 2n-1 |
| 2n |
考点:数列的求和
专题:等差数列与等比数列
分析:利用错位相减法即可得到结论.
解答:
解:因为Sn=
+
+
+
+…+
,
所以
Sn=
+
+
+…+
+
,
两式相减得:
Sn=
+
+
+
+…+
-
=
+
-
,
则Sn=3-
.
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 8 |
| 7 |
| 16 |
| 2n-1 |
| 2n |
所以
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 8 |
| 5 |
| 16 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
两式相减得:
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 4 |
| 2 |
| 8 |
| 2 |
| 16 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
| 1 |
| 2 |
| ||||
1-
|
| 2n-1 |
| 2n+1 |
则Sn=3-
| 2n+3 |
| 2n |
点评:本题主要考查数列求和,利用错位相减法是解决本题的关键.
练习册系列答案
相关题目