题目内容

(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值为(  )
A、-1B、0C、2D、-2
考点:二项式系数的性质
专题:二项式定理
分析:由题意可得a0=1,令x=
1
2
,可得0=1+
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
,由此求得所求式子的值.
解答: 解:在 (1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R)中,易知a0=1,
令x=
1
2
,可得0=1+
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014

a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
=-1,
故选:A.
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网