题目内容

如图,三棱柱ABC-A1B1C1中,∠CAA1=∠A1AB=∠BAC=90°,AB=AA1=1,AC=2.
(1)求证:A1B⊥平面AB1C;
(2)求直线B1C与平面ACC1A1所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明A1B⊥平面AB1C,利用线面垂直的判定,证明A1B垂直于平面AB1C中两条相交直线即可;
(2)连接A1C,证明∠B1CA1是直线B1C与平面ACC1A1所成角,再求直线B1C与平面ACC1A1所成角的正弦值.
解答: (1)证明:∵∠CAA1=∠BAC=90°,
∴CA⊥AA1,CA⊥AB,
∵A1A∩AB=A,
∴CA⊥平面A1B1BA,
∵A1B?平面A1B1BA,
∴CA⊥A1B,
∵四边形A1B1BA为正方形,
∴A1B⊥AB1
∵AC∩AB1=A,
∴A1B⊥平面AB1C;
(2)解:连接A1C,则B1A1⊥AA1,B1A1⊥AC,
∵AA1∩AC=A,
∴B1A1⊥平面ACC1A1
∴∠B1CA1是直线B1C与平面ACC1A1所成角.
在矩形ACC1A1中,AA1=1,AC=2,∴A1C=
5

∵A1B1=AB=1,
∴在Rt△A1B1C中,CB1=
6

∴sin∠B1CA1=
6
6
点评:本题主要考查异面直线所成的角的定义和求法,体现了转化的数学思想,直线和平面垂直的判定定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网