题目内容
4.与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点P(2,1)的双曲线方程是( )| A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | x2-$\frac{{y}^{2}}{2}$=1 |
分析 先根据椭圆的标准方程,求得焦点坐标,进而求得双曲线离心率,根据点P在双曲线上,根据定义求出a,从而求出b,则双曲线方程可得.
解答 解:由题设知:焦点为($±\sqrt{3}$,0),2a=$\sqrt{(2+\sqrt{3})^{2}+1}$-$\sqrt{(2-\sqrt{3})^{2}+1}$=2$\sqrt{2}$,
∴a=$\sqrt{2}$,c=$\sqrt{3}$,b=1
∴与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点P(2,1)的双曲线方程是$\frac{{x}^{2}}{2}$-y2=1.
故选C.
点评 本题主要考查了双曲线的标准方程.考查了学生对双曲线和椭圆基本知识的掌握.
练习册系列答案
相关题目
16.若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23-1),则( )
| A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | c<a<b |
13.已知圆x2+y2+2x-2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是( )
| A. | -4 | B. | -3 | C. | -2 | D. | -1 |
14.在△ABC中,D在AB上,AD:DB=1:2,E为AC中点,CD、BE相交于点P,连结AP.设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则x,y的值分别为( )
| A. | $\frac{1}{2},\frac{1}{3}$ | B. | $\frac{1}{3},\frac{2}{3}$ | C. | $\frac{1}{5},\frac{2}{5}$ | D. | $\frac{1}{3},\frac{1}{6}$ |