题目内容
14.在△ABC中,D在AB上,AD:DB=1:2,E为AC中点,CD、BE相交于点P,连结AP.设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则x,y的值分别为( )| A. | $\frac{1}{2},\frac{1}{3}$ | B. | $\frac{1}{3},\frac{2}{3}$ | C. | $\frac{1}{5},\frac{2}{5}$ | D. | $\frac{1}{3},\frac{1}{6}$ |
分析 由D、P、C三点共线,则存在实数λ使得$\overrightarrow{AP}$=λ$\overrightarrow{AC}$+$\frac{1}{3}$(1-λ)$\overrightarrow{AB}$,以及E、P、B三点共线,同理存在实数μ使得$\overrightarrow{AP}$=$\frac{1-μ}{2}$$\overrightarrow{AC}$+μ$\overrightarrow{AB}$,根据平面向量基本定理即可得$\left\{\begin{array}{l}{λ=\frac{1-μ}{2}}\\{μ=\frac{1-λ}{3}}\end{array}\right.$,解得λ或μ,再根据平面向量基本定理即可求出x,y的值.
解答
解:由D、P、C三点共线,则存在实数λ使得$\overrightarrow{DP}$=λ$\overrightarrow{DC}$=λ($\overrightarrow{AC}$-$\overrightarrow{AD}$),
∴$\overrightarrow{AP}$-$\overrightarrow{AD}$=$\overrightarrow{DP}$=λ($\overrightarrow{AC}$-$\overrightarrow{AD}$),
∴$\overrightarrow{AP}$=λ$\overrightarrow{AC}$+(1-λ)$\overrightarrow{AD}$,
∵AD:DB=1:2,
∵$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$,
∴$\overrightarrow{AP}$=λ$\overrightarrow{AC}$+$\frac{1}{3}$(1-λ)$\overrightarrow{AB}$,
由E为AC中点,由E、P、B三点共线,同理存在实数μ使得$\overrightarrow{AP}$=$\frac{1-μ}{2}$$\overrightarrow{AC}$+μ$\overrightarrow{AB}$,
∴$\left\{\begin{array}{l}{λ=\frac{1-μ}{2}}\\{μ=\frac{1-λ}{3}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{λ=\frac{2}{5}}\\{μ=\frac{1}{5}}\end{array}\right.$
∴$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,
∵$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),
∴x=$\frac{1}{5}$,y=$\frac{2}{5}$,
故选:C
点评 本题考查共线向量基本定理,以及向量的减法,以及平面向量基本定理,属于中档题
| A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | x2-$\frac{{y}^{2}}{2}$=1 |
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 无数多个 |
| A. | {1,4} | B. | {0,1,4} | C. | {0,2} | D. | {0,1,2,4} |
| 板材类型 | A | B | C |
| 甲型石板(块) | 1 | 2 | 4 |
| 乙型石板(块) | 2 | 1 | 5 |
(1)用x,y列出满足客户要求的数学关系式,并画出相应的平面区域;
(2)加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?