题目内容

设向量
a
=(cosα,sinα)(0≤α<2π),
b
=(-
1
2
3
2
)
,且
a
b
不共线,
(Ⅰ)求证:
a
+
b
a
-
b

(Ⅱ)若向量
3
a
+
b
a
-
3
b
的模相等,求角α.
考点:平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:(Ⅰ)由题意可得
a
+
b
a
-
b
的坐标,作数量积可得(
a
+
b
)•(
a
-
b
)=0,可得垂直;(Ⅱ)由题意可得(
3
a
+
b
2=(
a
-
3
b
2,又可得|
a
|
=|
b
|
=1,代入可得
a
b
=0,由三角函数的知识结合α的范围可得.
解答: 解:(Ⅰ)由题意可得
a
+
b
=(cosα-
1
2
,sinα+
3
2
),
a
-
b
=(cosα+
1
2
,sinα-
3
2
),
∴(
a
+
b
)•(
a
-
b
)=cos2α-
1
4
+sin2α-
3
4
=0
a
+
b
a
-
b

(Ⅱ)∵向量
3
a
+
b
a
-
3
b
的模相等,
∴(
3
a
+
b
2=(
a
-
3
b
2
a
2
-
b
2
+2
3
a
b
=0

又∵|
a
|
=
cos2α+sin2α
=1,|
b
|
=
(-
1
2
)2+(
3
2
)2
=1,
∴1-1+2
3
a
b
=0,解得
a
b
=0,
-
1
2
cosα
+
3
2
sinα=0,
∴tanα=
3
3
,又0≤α<2π,
∴α=
π
6
,或
6
点评:本题考查平面向量的数量积的运算,涉及向量的模长和三角函数,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网