题目内容

已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1.
考点:等差关系的确定
专题:等差数列与等比数列
分析:根据等差数列的定义以及充要条件的定义进行证明即可.
解答: 解:充分性:∵an+an+1=2n+1,
∴an+an+1=n+1+n,
即an+1-(n+1)=-(an-n),
若a1=1,则a2-(1+1)=-(a1-1)=0,
∴a2=2,以此类推得到an=n,
此时{an}为等差数列.
必要性:
∵an+an+1=2n+1,
∴an+2+an+1=2n+3,
两式相减得an+2-an=2,
若数列{an}为等差数列,则an+2-an=2d,
即2d=2,∴d=1.
则an+an+1=2an+1=2n+1,
∴an=n,即a1=1成立.
综上数列{an}为等差数列的充要条件是a1=1.
点评:本题主要考查等差数列的定义以及充要条件的应用,考查学生的推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网