题目内容
19.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.| 投入促销费用x(万元) | 2 | 3 | 5 | 6 |
| 商场实际营销额y(万元) | 100 | 200 | 300 | 400 |
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)
分析 (1)分别求出$\overline{x}$,$\overline{y}$,求出$\widehat{b}$和$\widehat{a}$的值,求出回归方程即可;(2)解不等式,根据x的范围判断即可.
解答 解:(1)因为$\overline{x}$=$\frac{1}{4}$(2+3+5+6)=4,$\overline{y}$=$\frac{1}{4}$(100+200+300+400)=250,
则$\sum_{i=1}^{4}$${{(x}_{i}-\overline{x})}^{2}$=4+1+1+4=10,
$\sum_{i=1}^{4}$(xi-x)(yi-y)=(-2)×(-150)+(-1)×(-50)+1×50+2×150=700,
所以$\widehatb$=$\frac{\sum_{i=1}^{4}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{4}{(x}_{i}-\overline{x})}^{2}}$=$\frac{700}{10}$=70,$\widehata$=y-$\widehatb$x=250-70×4=-30.
故所求的回归直线方程为$\widehaty$=70x-30.
(2)由题意得70x-30≥600,即x≥$\frac{600+30}{70}$=9,
所以若该商场计划营销额不低于600万元,则至少要投入9万元的促销费用.
点评 本题考查了求回归方程问题,考查方程的应用,是一道中档题.
练习册系列答案
相关题目
9.设集合M={x|4≤2x≤16},N={x|x(x-3)<0},则M∩N=( )
| A. | (0,3) | B. | [2,3] | C. | [2,3) | D. | (3,4) |
4.在△ABC中,角A、B、C的对边分别为a,b,c,则“a=2bcosC”是“△ABC是等腰三角形”的( )
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
5.某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系.
参考数据:独立检验随机变量K2的临界值参考表:
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d)
(1)试根据上述数据完成2×2列联表;
| 数学成绩及格 | 数学成绩不及格 | 合计 | |
| 比较细心 | 45 | 10 | 55 |
| 比较粗心 | 15 | 30 | 45 |
| 合计 | 60 | 40 | 100 |
参考数据:独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |