题目内容

如图:已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).
(1)求p的值;
(2)求△AOB的面积.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用OD⊥AB,可求直线AB的方程,与抛物线方程联立,利用韦达定理,结合OA⊥OB,利用向量的数量积公式,即可求出p的值;
(2)利用弦长公式求出|AB|,求出|OD|,即可求△AOB的面积.
解答: 解(1)∵OD⊥AB,∴kOD•kAB=-1.
kOD=
1
2
,∴kAB=-2,
∴直线AB的方程为y=-2x+5.….…(1分)
设A(x1,x2),B(x2,y2),则
OA⊥OB⇒
OA
OB
=0⇒x1x2+y1y2=0
….…(2分)
又x1x2+y1y2=x1x2+(-2x1+5)(-2x2+5)=5x1x2-10(x1+x2)+25
联立方程
y2=2px
y=-2x+5
消y可得4x2-(20+2p)x+25=0①
x1+x2=
10+p
2
x1x2=
25
4
….(3分)
x1x2+y1y2=5×
25
4
-10×
10+p
2
+25
=
5
4
-p

p=
5
4

p=
5
4
时,方程①成为8x2-45x+50=0显然此方程有解.
p=
5
4
….…(5分)
(2)由|AB|=
(1+k2)[(x1+x2)2-4x1x2]
=
5×[(
15
8
)
2
-25]
=
5
85
8
.…(7分)
|OD|=
5
.…(8分)
S△AOB=
1
2
|AB|•|OD|
=
1
2
×
5
×
5
85
8
=
25
17
16
….…(10分)
点评:本题考查抛物线方程,考查直线与抛物线的位置关系,考查三角形的面积计算,正确运用韦达定理是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网