题目内容

已知tanβ=-
1
3
,tanα=2,α,β∈(0,π),求:
(1)求:α+β;
(2)求:tan(β-2α)的值.
考点:两角和与差的正切函数
专题:三角函数的求值
分析:(1)由已知数据可缩小角的范围,并可得tan(α+β)的值,可得结论;(2)由二倍角公式可得tan2α,再由两角差的正切公式可得tan(β-2α)
解答: 解:(1)∵tanβ=-
1
3
,tanα=2,
又∵α,β∈(0,π),
∴β∈(
π
2
,π),α∈(0,
π
2
),
∴α+β∈(
π
2
2

由两角和的正切公式可得tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
2-
1
3
1+
2
3
=1,
∴α+β=
4

(2)∵tanα=2,∴tan2α=
2tanα
1-tan2α
=-
4
3

∴tan(β-2α)=
tanβ-tan2α
1+tanβtan2α
=
9
13
点评:本题考查两角和与差的正切函数公式以及二倍角的正切公式,注意缩小角的范围是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网