ÌâÄ¿ÄÚÈÝ
8£®¼×¡¢ÒÒÁ½È˽øÐÐΧÆå±ÈÈü£¬Ô¼¶¨ÏÈÁ¬Ê¤Á½¾ÖÕßÖ±½ÓÓ®µÃ±ÈÈü£¬ÈôÈüÍê$\frac{2}{3}$¾ÖÈÔδ³öÏÖÁ¬Ê¤£¬ÔòÅж¨»ñʤ¾ÖÊý¶àÕßÓ®µÃ±ÈÈü£®¼ÙÉèÿ¾Ö¼×»ñʤµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬ÒÒ»ñʤµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬¸÷¾Ö±ÈÈü½á¹ûÏ໥¶ÀÁ¢£®£¨¢ñ£©Çó¼×ÔÚ4¾ÖÒÔÄÚ£¨º¬ 4 ¾Ö£©Ó®µÃ±ÈÈüµÄ¸ÅÂÊ£»
£¨¢ò£©¼Ç X Ϊ±ÈÈü¾ö³öʤ¸ºÊ±µÄ×ܾÖÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨¢ñ£©¸ù¾Ý¸ÅÂʵij˷¨¹«Ê½£¬Çó³ö¶ÔÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨¢ò£©ÀûÓÃÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö±ðÇó³ö¶ÔÓ¦µÄ¸ÅÂÊ£¬¼´¿ÉÇóXµÄ·Ö²¼ÁУ»ÒÔ¼°ÊýѧÆÚÍû£®
½â´ð ½â£º£¨I£©ÓÃA±íʾ¼×ÔÚ4¾ÖÒÔÄÚ£¨º¬4¾Ö£©Ó®µÃ±ÈÈüµÄÊÇʼþ£¬Ak±íʾµÚk¾Ö¼×»ñʤ£¬Bk±íʾµÚk¾ÖÒÒ»ñʤ£¬
ÔòP£¨Ak£©=$\frac{2}{3}$£¬P£¨Bk£©=$\frac{1}{3}$£¬k=1£¬2£¬3£¬4£¬5
P£¨A£©=P£¨A1A2£©+P£¨B1A2A3£©+P£¨A1B2A3A4£©=£¨$\frac{2}{3}$£©2+$\frac{1}{3}¡Á$£¨$\frac{2}{3}$£©2+$\frac{2}{3}$¡Á$\frac{1}{3}$¡Á£¨$\frac{2}{3}$£©2=$\frac{56}{81}$£®
£¨¢ò£©XµÄ¿ÉÄÜȡֵΪ2£¬3£¬4£¬5£®
P£¨X=2£©=P£¨A1A2£©+P£¨B1B2£©=$\frac{5}{9}$£¬
P£¨X=3£©=P£¨B1A2A3£©+P£¨A1B2B3£©=$\frac{2}{9}$£¬
P£¨X=4£©=P£¨A1B2A3A4£©+P£¨B1A2B3B4£©=$\frac{10}{81}$£¬
P£¨X=5£©=P£¨A1B2A3B4A5£©+P£¨B1A2B3A4B5£©+P£¨B1A2B3A4A5£©+P£¨A1B2A3B4B5£©=$\frac{8}{81}$£¬
»òÕßP£¨X=5£©=1-P£¨X=2£©-P£¨X=3£©-P£¨X=4£©=$\frac{8}{81}$£¬
¹Ê·Ö²¼ÁÐΪ£º
| X | 2 | 3 | 4 | 5 |
| P | $\frac{5}{9}$ | $\frac{2}{9}$ | $\frac{10}{81}$ | $\frac{8}{81}$ |
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þ¡¢»¥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $3\sqrt{3}$ | B£® | $2\sqrt{6}$ | C£® | $\sqrt{21}$ | D£® | $2\sqrt{5}$ |
±í1
| Í£³µ¾àÀëd£¨Ã×£© | £¨10£¬20] | £¨20£¬30] | £¨30£¬40] | £¨40£¬50] | £¨50£¬60] |
| ƵÊý | 26 | a | b | 8 | 2 |
| ƽ¾ùÿºÁÉýѪҺ¾Æ¾«º¬Á¿xºÁ¿Ë | 10 | 30 | 50 | 70 | 90 |
| ƽ¾ùÍ£³µ¾àÀëyÃ× | 30 | 50 | 60 | 70 | 90 |
£¨¢ñ£©Çóa£¬bµÄÖµ£¬²¢¹À¼Æ¼ÝʻԱÎÞ¾Æ×´Ì¬ÏÂÍ£³µ¾àÀëµÄƽ¾ùÊý£»
£¨¢ò£©¸ù¾Ý×îС¶þ³Ë·¨£¬Óɱí2µÄÊý¾Ý¼ÆËãy¹ØÓÚxµÄ»Ø¹é·½³Ì$\hat y=\hat bx+\hat a$£»
£¨¢ó£©¸Ã²âÊÔÍŶÓÈÏΪ£º¼ÝʻԱ¾Æºó¼Ý³µµÄƽ¾ù¡°Í£³µ¾àÀ롱y´óÓÚ£¨¢ñ£©ÖÐÎÞ¾Æ×´Ì¬ÏµÄÍ£³µ¾àÀëÆ½¾ùÊýµÄ3±¶£¬ÔòÈ϶¨¼ÝʻԱÊÇ¡°×í¼Ý¡±£®Çë¸ù¾Ý£¨¢ò£©ÖеĻع鷽³Ì£¬Ô¤²âµ±Ã¿ºÁÉýѪҺ¾Æ¾«º¬Á¿´óÓÚ¶àÉÙºÁ¿ËʱΪ¡°×í¼Ý¡±£¿
£¨¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©£¬Æä»Ø¹éÖ±Ïß$\hat y=\hat bx+\hat a$µÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$£¬$\hat a=\bar y-\hat b\bar x$£®£©
| A£® | [1£¬$\sqrt{2}$] | B£® | [$\sqrt{2}$£¬2$\sqrt{2}$] | C£® | [2£¬2$\sqrt{2}$] | D£® | [1£¬2$\sqrt{2}$] |
| A£® | £¨-¡Þ£¬e£© | B£® | £¨1£¬+¡Þ£© | C£® | £¨1£¬e£© | D£® | £¨e£¬+¡Þ£© |