题目内容

函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=(  )
A、13
B、2
C、
2
13
D、
13
2
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(x+2)=
13
f(x)
,从而f(99)=
13
f(97)
=f(95)=
13
f(93)
=f(91)=
13
f(89)
=f(87)=f(3)=
13
f(1)
=
13
2
解答: 解:∵函数f(x)满足f(x)•f(x+2)=13,f(1)=2,
∴f(x+2)=
13
f(x)

∴f(99)=
13
f(97)
=f(95)=
13
f(93)
=f(91)
=
13
f(89)
=f(87)=f(3)=
13
f(1)
=
13
2

故选:D.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数的周期性的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网