题目内容
| BD |
| 1 |
| 2 |
| DC |
| AE |
| ED |
| AB |
| a |
| AC |
| b |
| CE |
考点:平面向量的基本定理及其意义
专题:计算题,平面向量及应用
分析:由
=
,得到
=
+
,由于
=3
,则
=3(
-
),则有
=
=
+
,再由
=
-
即可得到.
| BD |
| 1 |
| 2 |
| DC |
| AD |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| AE |
| ED |
| AE |
| AD |
| AE |
| AE |
| 3 |
| 4 |
| AD |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
| CE |
| AE |
| AC |
解答:
解:若
=
,
=
,
=
,
则
-
=
(
-
),
则有
=
+
=
+
,
则
=
-
=
-
,
由于
=3
,
则
=3(
-
),
则有
=
=
+
,
故
=
-
=
-
.
故答案为:
-
.
| AB |
| a |
| AC |
| b |
| BD |
| 1 |
| 2 |
| DC |
则
| AD |
| AB |
| 1 |
| 2 |
| AC |
| AD |
则有
| AD |
| 2 |
| 3 |
| AB |
| 1 |
| 3 |
| AC |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
则
| CD |
| AD |
| AC |
| 2 |
| 3 |
| a |
| 2 |
| 3 |
| b |
由于
| AE |
| ED |
则
| AE |
| AD |
| AE |
则有
| AE |
| 3 |
| 4 |
| AD |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
故
| CE |
| AE |
| AC |
| 1 |
| 2 |
| a |
| 3 |
| 4 |
| b |
故答案为:
| 1 |
| 2 |
| a |
| 3 |
| 4 |
| b |
点评:本题考查平面向量基本定理及运用,考查向量的运算,属于中档题.
练习册系列答案
相关题目
已知集合A={x|-2≤x≤1},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},求B∩C=( )
| A、[0,4] |
| B、[-1,5] |
| C、[1,4] |
| D、[-1,4] |
函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=( )
| A、13 | ||
| B、2 | ||
C、
| ||
D、
|