题目内容

一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ζ元,求ζ的概率分布及数学期望.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(1)利用n次独立重复试验恰有k次发生的概率计算公式能求出这批产品通过检验的概率.
(2)由已知条件知ζ的所有取值为375,500,分别求出相对应的概率,由此能求出ζ的概率分布列和数学期望.
解答: 解:(1)这批产品通过检验的概率:
P=(
4
5
)3+
C
2
3
•(
4
5
)2•(
1
5
)1
4
5
=
512
625
.…(5分)
(2)由已知条件知ζ的所有取值为375,500,
P(ζ=375)=(
4
5
)3+
C
1
3
(
4
5
)1(
1
5
)2+(
1
5
)3=
77
125

P(ζ=500)=
C
2
3
(
4
5
)2(
1
5
)1=
48
125

∴ζ的概率分布列为:
 ξ  375  500
 P  
77
125
 
48
125
E(ζ)=375×
77
125
+500×
48
125
=423
.…(10分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网