题目内容

函数f(x)=cos2x+sinx,那么下列命题中假命题的是(  )
A、f(x)在[-π,0]上恰有一个零点
B、f(x)既不是奇函数也不是偶函数
C、f(x)是周期函数
D、f(x)在区间(
π
2
6
)上是增函数
考点:函数零点的判定定理
专题:函数的性质及应用
分析:由f(x)=cos2x+sinx=1-sin2x+sinx=0得f(x)在[-π,0]上恰有2个零点;由f(x)=cos2x+sinx,得f(-x)=cos2x-sinx,故f(x)既不是奇函数也不是偶函数,由f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4
,得f(x)是周期函数,f(x)在(
π
2
6
)上是增函数.
解答: 解:∵由f(x)=cos2x+sinx=1-sin2x+sinx=0,
得sinx=
1-
5
2

∴f(x)在[-π,0]上恰有2个零点,即A是假命题;
∵f(x)=cos2x+sinx,
∴f(-x)=cos2x-sinx,
故f(x)既不是奇函数也不是偶函数,即B是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)是周期函数,即C是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)在(
π
2
6
)上是增函数,即D是真命题.
故选:A.
点评:本题考查命题的真假判断,是基础题.解题时要注意三角函数性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网