题目内容

14.如图所示,三棱锥P-ABC中,△ABC是边长为3的等边三角形,D是线段AB的中点,DE∩PB=E,且DE⊥AB,若∠EDC=120°,PA=$\frac{3}{2}$,PB=$\frac{3\sqrt{3}}{2}$,则三棱锥P-ABC的外接球的表面积为13π.

分析 由题意得PA2+PB2=AB2,即可得D为△PAB的外心,在CD上取点O1,使O1为等边三角形ABC的中心,在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心,在△DEC中求解OC,即可得到球半径,

解答 解:由题意,PA2+PB2=AB2,因为$\left\{\begin{array}{l}{AB⊥DE}\\{AB⊥DC}\\{ED∩DC=D}\end{array}\right.$,∴AD⊥面DEC,
∵AD?PAB,AD?ABC,∴面APB⊥面DEC,面ABC⊥面DEC,
在CD上取点O1,使O1为等边三角形ABC的中心,
∵D为△PAB斜边中点,∴在△DEC中,过D作直线与DE垂直,过O1作直线与DC垂直,两条垂线交于点O,则O为球心.
∵∠EDC=90°,∴$∠OD{O}_{1}=3{0}^{0}$,
又∵$D{O}_{1}=\frac{1}{3}CD=\frac{\sqrt{3}}{2}$,∴OO1=$\frac{1}{2}$,三棱锥P-ABC的外接球的半径R=$\sqrt{O{{O}_{1}}^{2}+C{{O}_{1}}^{2}}=\frac{\sqrt{13}}{2}$,
三棱锥P-ABC的外接球的表面积为4πR2=13π,
故答案为:13π.

点评 本题考查了几何体的外接球的表面积,解题关键是要找到球心,求出半径,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网