题目内容
3.已知函数f(x)的定义域为D,若存在区间[m,n]⊆D使得f(x):(Ⅰ)f(x)在[m,n]上是单调函数;
(Ⅱ)f(x)在[m,n]上的值域是[2m,2n],
则称区间[m,n]为函数f(x)的“倍值区间”.
下列函数中存在“倍值区间”的有①②④(填上所有你认为正确的序号)
①f(x)=x2; ②$f(x)=\frac{1}{x}$;③$f(x)=x+\frac{1}{x}$; ④$f(x)=\frac{3x}{{{x^2}+1}}$.
分析 函数中存在“倍值区间”,则:①f(x)在[m,n]内是单调函数,②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,对四个函数的单调性分别研究,从而确定是否存在“倍值区间”.
解答 解:函数中存在“倍值区间”,则:①f(x)在[m,n]内是单调函数,②$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.或\left\{\begin{array}{l}{f(m)=2n}\\{f(n)=2m}\end{array}\right.$,
①f(x)=x2,若存在“倍值区间”[m,n],$\left\{\begin{array}{l}{f(m)=2m}\\{f(n)=2n}\end{array}\right.$⇒$\left\{\begin{array}{l}{{m}^{2}=2m}\\{{n}^{2}=2n}\end{array}\right.$⇒$\left\{\begin{array}{l}{m=0}\\{n=2}\end{array}\right.$,∴f(x)=x2,存在“倍值区间”[0,2];
②f(x)=$\frac{1}{x}$(x∈R),若存在“倍值区间”[m,n],当x>0时,$\left\{\begin{array}{l}{\frac{1}{m}=2n}\\{\frac{1}{n}=2m}\end{array}\right.$⇒mn=$\frac{1}{2}$,故只需mn=$\frac{1}{2}$即可,故存在;
③$f(x)=x+\frac{1}{x}$;当x>0时,在区间[0,1]上单调递减,在区间[1,+∞)上单调递增,若存在“倍值区间”[m,n]⊆[0,1]⇒m+$\frac{1}{m}$=2n,n+$\frac{1}{n}$=2m⇒m2-2mn+1=0.n2-2mn+1=0
⇒m2=n2不符题意;若存在“倍值区间”[m,n]⊆[1,+∞)⇒m+$\frac{1}{m}$=2m,n+$\frac{1}{n}$=2n⇒m2=n2=1不符题意,故此函数不存在“倍值区间“;
④$f(x)=\frac{3x}{{{x^2}+1}}$.$f′(x)=\frac{3(1-x)(1+x)}{({x}^{2}+1)}$,当x∈[0,1]时,f′(x)>0,当x∈[1,+∞)时,f′(x)<0,在区间[0,1]上单调递增,在区间[1,+∞)上单调递减,
若存在“倍值区间”[m,n]⊆[0,1],$\frac{3m}{{m}^{3}+1}=2m.\frac{3n}{{n}^{2}+1}=2n$,∴m=0,n=$\frac{\sqrt{2}}{2}$,即存在“倍值区间”[0,$\frac{\sqrt{2}}{2}$];
故答案为:①②④
点评 本题考查新定义,考查学生分析解决问题的能力,涉及到大量的函数知识及计算,属于中档题.
| A. | x+y+1=0 | B. | x-y+1=0 | C. | x+y-1=0 | D. | x-y-1=0 |
| A. | a2<b2 | B. | $\sqrt{-a}<\sqrt{b}$ | C. | $\frac{1}{a}<\frac{1}{b}$ | D. | $\frac{a}{b}$+$\frac{b}{a}$≥2 |
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 以上均有可能 |
| A. | (1,2) | B. | (2,+∞) | C. | $(1,\;\sqrt{2})$ | D. | $(\sqrt{2},\;+∞)$ |