题目内容
已知回归直线的斜率的估计值为1.4,样本点的中心为(5,9),则回归直线方程为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:线性回归方程
专题:概率与统计
分析:利用已知条件设出回归直线方程,代入样本中心坐标,求解即可.
解答:
解:由题意回归直线方程为:
=1.4x+a,因为回归直线经过样本中心,所以
9=1.4×5+a,解得a=2.
所求回归直线方程为:
=1.4x+2.
故选:C.
| ? |
| y |
9=1.4×5+a,解得a=2.
所求回归直线方程为:
| ? |
| y |
故选:C.
点评:本题考查回归直线方程的求法,基本知识的考查.
练习册系列答案
相关题目
在△ABC中,内角A、B、C所对的边分别是a、b、c,若2c2=2a2+2b2+ab,则△ABC是( )
| A、等边三角形 |
| B、锐角三角形 |
| C、直角三角形 |
| D、钝角三角形 |
对任意的正数s,t,有下列4个关系式:
①f(s+t)=f(s)+f(t);
②f(s+t)=f(s)f(t);
③f(st)=f(s)+f(t);
④f(st)=f(s)f(t).
则下列函数中,不满足任何一个关系式的是( )
①f(s+t)=f(s)+f(t);
②f(s+t)=f(s)f(t);
③f(st)=f(s)+f(t);
④f(st)=f(s)f(t).
则下列函数中,不满足任何一个关系式的是( )
| A、y=kx+b(kb≠0) |
| B、y=x2 |
| C、y=ax(a>0,且a≠1) |
| D、y=logax(a>0,且a≠1) |
设复数z满足z•(1+i)=2i+1(i为虚数单位),则复数z在复平面内对应的点位于( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
若集合A={y|y=2x+1},B={x|y=
}则(∁RA)∩B( )
| -x2-x+6 |
| A、[-3,1] |
| B、(-∞,-3) |
| C、[-3,-1) |
| D、(-∞,0) |