题目内容
2.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若$a=1,b=\sqrt{3},A+C=2B$,则△ABC的面积为$\frac{\sqrt{3}}{2}$.分析 利用三角形的内角和解出B,使用余弦定理解出c,代入三角形的面积公式计算.
解答 解:∵A+C=2B,A+B+C=π,
∴B=$\frac{π}{3}$,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1+{c}^{2}-3}{2c}$=$\frac{1}{2}$,
解得c=2或c=-1(舍).
∴S△ABC=$\frac{1}{2}ac$sinB=$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题考查了余弦定理在解三角形中的应用,三角形的面积公式,属于中档题.
练习册系列答案
相关题目
12.已知i为虚数单位,复数z满足(1-3i)z=10(1+i),则|z|=( )
| A. | $\sqrt{5}$ | B. | 5 | C. | 2$\sqrt{5}$ | D. | 20 |
13.汽车业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,将对二氧化碳排放量超过130g/km的M1型汽车进行惩罚,某检测单位对甲、乙两类M1型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km)
经测算发现,乙品牌M1型汽车二氧化碳排放量的平均值为 $\overline{x_乙}=120g/km$
(Ⅰ)从被检测的5辆甲类M1型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过130g/km的概率是多少?
(Ⅱ)求表中x的值,并比较甲、乙两品牌M1型汽车二氧化碳排放量的稳定性.
(${s^2}=\frac{1}{n}[{(\overline x-{x_1})^2}+{(\overline x-{x_2})^2}+…+{(\overline x-{x_n})^2}]$其中,$\overline x$表示的平均数,n表示样本的数量,xi表示个体,s2表示方差)
| 甲 | 80 | 110 | 120 | 140 | 150 |
| 乙 | 100 | 120 | x | 100 | 160 |
(Ⅰ)从被检测的5辆甲类M1型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过130g/km的概率是多少?
(Ⅱ)求表中x的值,并比较甲、乙两品牌M1型汽车二氧化碳排放量的稳定性.
(${s^2}=\frac{1}{n}[{(\overline x-{x_1})^2}+{(\overline x-{x_2})^2}+…+{(\overline x-{x_n})^2}]$其中,$\overline x$表示的平均数,n表示样本的数量,xi表示个体,s2表示方差)
10.阅读如图所示的程序框图,若输入m=2016,则输出S等于( )

| A. | 10072 | B. | 10082 | C. | 10092 | D. | 20102 |
17.已知圆C的圆心是直线x-y+1=0与y轴的交点,且圆C与直线x+y+3=0相切,则圆的标准方程为( )
| A. | x2+(y-1)2=8 | B. | x2+(y+1)2=8 | C. | (x-1)2+(y+1)2=8 | D. | (x+1)2+(y-1)2=8 |
14.($\frac{x}{\sqrt{y}}$-$\frac{y}{\sqrt{x}}$)6的展开式中,x3的系数等于( )
| A. | -15 | B. | 15 | C. | 20 | D. | -20 |
11.已知数列{an}中,a1=25,4an+1=4an-7,若用Sn表示该数列前n项和,则( )
| A. | 当n=15时,Sn取到最大值 | B. | 当n=16时,Sn取到最大值 | ||
| C. | 当n=15时,Sn取到最小值 | D. | 当n=16,Sn取到最小值 |
12.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$,则不等式f(log2x)-f(log${\;}_{\frac{1}{2}}$x)≥$\frac{2({e}^{2}-1)}{{e}^{2}+1}$的解集为( )
| A. | [$\frac{1}{2}$,+∞) | B. | [2,+∞) | C. | (0,2] | D. | [$\frac{1}{2}$,2] |