题目内容

15.已知等比数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an-3.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式是bn=$\frac{1}{lo{g}_{3}{a}_{n}(lo{g}_{3}{{a}_{n}}^{2}+1)}$,求证对一切的正整数n都有:b1+b2+…+bn<$\frac{2}{3}$.

分析 (1)当n≥2时,有2Sn-1=3an-1-3,2Sn=3an-3,两式相减,得an=3an-1(n≥2),由此能求出an=3n.
(2)
把{an}的通项公式代入bn=$\frac{1}{lo{g}_{3}{a}_{n}(lo{g}_{3}{{a}_{n}}^{2}+1)}$,得当n≥2时,$\frac{1}{n(2n+1)}=\frac{2}{2n(2n+1)}<\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}-\frac{1}{2n+1}$,即可.

解答 解:(1)当n≥2时,有2Sn-1=3an-1-3,①
又2Sn=3an-3,②
②-①得,2(Sn-Sn-1)=2an=3an-3an-1
即an=3an-1(n≥2).
又当n=1时,2a1=3a1-3,
∴a1=3.
故数列{an}为等比数列,且公比q=3.
∴an=3n
数列{an}的通项公式an=3n
(2)证明:∵log3an=n,∴bn=$\frac{1}{lo{g}_{3}{a}_{n}(lo{g}_{3}{{a}_{n}}^{2}+1)}$=$\frac{1}{n(2n+1)}$
当n≥2时,$\frac{1}{n(2n+1)}=\frac{2}{2n(2n+1)}<\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}-\frac{1}{2n+1}$,${b}_{1}=\frac{1}{3}$
正整数n都有:b1+b2+…+bn<b1$+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{2}{3}-\frac{1}{2n+1}$+$\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1}$
=$\frac{2}{3}$-$\frac{1}{2n+1}$<$\frac{2}{3}$.

点评 本题考查了 递推式的应用及简单的放缩再“裂项求和”求数列的前n项和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网