题目内容
7.两直线l1:2x+y-6=0,l2:x-y-6=0的交点P与圆(x-5)2+(y-5)2=4上任一点Q连线的中点的轨迹方程是(x-$\frac{9}{2}$)2+(y-$\frac{3}{2}$)2=1.分析 由题意,设出中点M的坐标为(x,y),求出两直线l1:2x+y-6=0,l2:x-y-6=0的交点P的坐标,利用中点坐标得出Q的坐标为(x,2y),Q点在圆上,带入可得中点M轨迹方程.
解答 解:由题意,设中点M的坐标为(x,y),两直线l1:2x+y-6=0,l2:x-y-6=0的交点P的坐标为(4,-2),
则Q的坐标为(2x-4,2y+2)
点Q在圆(x-5)2+(y-5)2=4上
∴(2x-9)2+(2y-3)2=4
即(x-$\frac{9}{2}$)2+(y-$\frac{3}{2}$)2=1
故答案为:(x-$\frac{9}{2}$)2+(y-$\frac{3}{2}$)2=1.
点评 本题考查了轨迹方程方程的求法,利用到了中点坐标的关系.属于基础题.
练习册系列答案
相关题目
18.某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚已30元/个价格作普通蛋糕低价售出,可以全部售完.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润y(单位:元)关于当天生日蛋糕的需求量n(单位个,n∈N*)的函数关系;
(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;
(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润y(单位:元)关于当天生日蛋糕的需求量n(单位个,n∈N*)的函数关系;
(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
| 日需求量n | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 频数(天) | 10 | 20 | 20 | 14 | 13 | 13 | 10 |
(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
16.设x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则(x+1)2+y2的最小值为( )
| A. | 1 | B. | $\frac{9}{2}$ | C. | 5 | D. | 9 |
17.如图,OABC是四面体,G是△ABC的重心,G1是OG上一点,且OG=3OG1,则( )
| A. | $\overrightarrow{O{G}_{1}}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$ | B. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$ | ||
| C. | $\overrightarrow{O{G}_{1}}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$+$\frac{3}{4}$$\overrightarrow{OC}$ | D. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{9}$$\overrightarrow{OA}$+$\frac{1}{9}$$\overrightarrow{OB}$+$\frac{1}{9}$$\overrightarrow{OC}$ |