题目内容

已知直三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,且∠ABC=90°,AC=2a,BB1=3a,D为A1C1的中点.问在线段AA1是否存在点F,使CF⊥面B1DF.
考点:直线与平面垂直的判定
专题:计算题,空间位置关系与距离
分析:建立空间坐标系,给出有关点的坐标,设出点F的坐标,由线面垂直转化为线的方向向量与面的法向量垂直,利用二者内积为零建立关于参数的方程即可.
解答: 解:因为直三棱柱ABC-A1B1C1中,
BB1⊥面ABC,∠ABC=
π
2

以B点为原点,BA、BC、BB1分别为x、y、z轴建立如图所示空间直角坐标系.
因为AC=2a,∠ABC=90°,所以AB=BC=
2
a,
从而B(0,0,0),A(
2
a,0,0),C(0,
2
a,0),B1(0,0,3a),A1
2
a,0,3a),C1(0,
2
a,3a),D(
2
2
a,
2
2
a,3a),E(0,
2
2
a,
3
2
a).
所以
CA1
=(
2
a,-
2
a,3a),
设AF=x,则F(
2
a,0,x),
CF
=(
2
a,-
2
a,x),
B1F
=(
2
a,0,x-3a),
B1D
=(
2
2
a,
2
2
a,0),
CF
B1D
=
2
2
2
•a2+(-
2
2
2
•a2+x•0=0
所以
CF
B1D

要使CF⊥平面B1DF,只需CF⊥B1F.
CF
B1F
=2a2+x(x-3a)=0,得x=a或x=2a,
故当AF=a或2a时,CF⊥平面B1DF.
点评:本题考查用空间向量为工具解决立体几何问题,此类题关键是找清楚线的方向向量、面的法向量以及这些向量内积为0、共线等与立体几何中线面、面面位置关系的对应,考察了转化思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网