题目内容
已知等差数列{an}的前n项和为Sn(n∈N*),且an=2n+λ,若数列{Sn}在{n|n≥5,n∈N+}内为递增数列,则实数λ的取值范围为( )
| A、(-3,+∞) |
| B、(-10,+∞) |
| C、[-11,+∞) |
| D、(-12,+∞) |
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由等差数列的通项公式求出首项和公差,代入等差数列的前n项和公式,由关于n的二次函数的对称轴的位置求得λ的范围.
解答:
解:在等差数列{an}中,由an=2n+λ,得:
a1=2+λ,d=2.
∴Sn=na1+
d=n(2+λ)+
=n2+(λ+1)n.
其对称轴方程为n=-
,
要使数列{Sn}在{n|n≥5,n∈N+}内为递增数列,
则-
<
,即λ>-12.
故选:D.
a1=2+λ,d=2.
∴Sn=na1+
| n(n-1) |
| 2 |
| 2n(n-1) |
| 2 |
其对称轴方程为n=-
| λ+1 |
| 2 |
要使数列{Sn}在{n|n≥5,n∈N+}内为递增数列,
则-
| λ+1 |
| 2 |
| 11 |
| 2 |
故选:D.
点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,考查了数列的函数特性,是基础题.
练习册系列答案
相关题目
下列说法中,正确的是( )
| A、命题“若am2<bm2,则a<b”的逆命题是真命题 |
| B、命题“p或q”为真命题,则命题“p”和命题“q”均为真命题 |
| C、已知x∈R,则“x>1”是“x>2”的充分不必要条件 |
| D、命题“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0” |
经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系,对每小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:
由表中样本数据求得回归方程为
=bx+a,则点(a,b)与直线x+18y=100的位置关系是( )
| x | 15 | 16 | 18 | 19 | 22 |
| y | 102 | 98 | 115 | 115 | 120 |
| y |
| A、点在直线左侧 |
| B、点在直线右侧 |
| C、点在直线上 |
| D、无法确定 |
A、
| ||
B、
| ||
C、
| ||
D、
|
i是虚数单位,
=( )
| i |
| 1-i |
A、-
| ||||
B、
| ||||
C、
| ||||
D、-
|
已知函数y=f(x)是定义在R上的偶函数,且f(1)=0,当x∈(-∞,0)时,xf′(x)<-f(-x)(其中f′(x)是f(x)的导函数),则不等式xf(x)>0的解集为( )
| A、(-∞,-1)∪(0,1) |
| B、(-∞,-1)∪(1,+∞) |
| C、(-1,0)∪(0,1) |
| D、(-1,0)∪(1,+∞) |
下列命题中假命题是( )
| A、“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1≥0” | ||||||||
B、设随机变量ξ~N(0,1).若P(ξ≥2)=p.则P(-2<ξ<0)=
| ||||||||
C、若函数y=lg(mx2-x-1)的值域为R,则m<-
| ||||||||
D、若a>0,b>0,a+b=4.则
|
若△ABC的内角A,B,C所对的边a,b,c满足b2=3ac,且sinB=4cosAsinC,则cosA=( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|