题目内容

数列{an}中,a1=1,它的前n项和为Sn,且
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n(n+1)
(n≥2,n∈N*).
(1)证明:
4Sn
(n+1)2
+
2
n(n+1)
=1,并求数列{an}的通项公式;
(2)当n>1,n∈N*时,证明:(1+
1
2a2-1
)(1+
1
2a3-1
)…(1+
1
2an-1
2an+1
2
考点:数列与不等式的综合,数列的概念及简单表示法,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
2Sn+(n+1)
2Sn-1+n
=(
n+1
n
)2
,由此利用累乘法得:
2Sn+(n+1)
2S1
=(
n+1
2
)2
,由此能证明
4Sn
(n+1)2
+
2
n+1
=1.由4Sn+2(n+1)=(n+1)2,能求出an=
1
2
n-
1
4

(2)由1+
1
2an-1
=1+
1
n-
1
2
=
2n+1
2n-1
,能证明(1+
1
2a2-1
)(1+
1
2a3-1
)…(1+
1
2an-1
)>
2an+1
2
解答: (1)证明:∵
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n(n+1)
(n≥2,n∈N*),
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n
-
1
n+1
(n≥2,n∈N*).
2Sn
(n+1)2
+
1
n+1
=
2Sn-1
n2
+
1
n
(n≥2,n∈N*).
2Sn+(n+1)
(n+1)2
=
2Sn-1+n
n2

2Sn+(n+1)
2Sn-1+n
=(
n+1
n
)2

2Sn-1+n
2Sn-2+n-1
=(
n
n-1
)2


2S2+3
2S1+2
=(
3
2
)2

上式累乘,得:
2Sn+(n+1)
2S1
=(
n+1
2
)2

又a1=S1=1,∴4Sn+2(n+1)=(n+1)2
两边同时除以(n+1)2,得
4Sn
(n+1)2
+
2
n+1
=1.
∵4Sn+2(n+1)=(n+1)2
∴4Sn=(n+1)2-2(n+1)=n2-1,①
4Sn-1=(n-1)2-1,②
①-②,得4an=n2-(n-1)2=2n-1,
∴an=
1
2
n-
1
4

(2)证明:∵1+
1
2an-1
=1+
1
n-
1
2
=
2n+1
2n-1

∴(1+
1
2a2-1
)(1+
1
2a3-1
)…(1+
1
2an-1

=
5
3
×
7
5
×
9
7
×…×
2n-1
2n-2
×
2n+1
2n-1

=
2n+1
3
n+
1
2
2
=
2an+1
2
点评:本题考查等式和不等式的证明,考查数列的通项公式的求法,解题时要认真审题,注意累乘法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网