题目内容
数列{an}中,a1=1,它的前n项和为Sn,且
=
+
(n≥2,n∈N*).
(1)证明:
+
=1,并求数列{an}的通项公式;
(2)当n>1,n∈N*时,证明:(1+
)(1+
)…(1+
)>
.
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n(n+1) |
(1)证明:
| 4Sn |
| (n+1)2 |
| 2 |
| n(n+1) |
(2)当n>1,n∈N*时,证明:(1+
| 1 |
| 2a2-1 |
| 1 |
| 2a3-1 |
| 1 |
| 2an-1 |
| ||
| 2 |
考点:数列与不等式的综合,数列的概念及简单表示法,数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
=(
)2,由此利用累乘法得:
=(
)2,由此能证明
+
=1.由4Sn+2(n+1)=(n+1)2,能求出an=
n-
.
(2)由1+
=1+
=
,能证明(1+
)(1+
)…(1+
)>
.
| 2Sn+(n+1) |
| 2Sn-1+n |
| n+1 |
| n |
| 2Sn+(n+1) |
| 2S1 |
| n+1 |
| 2 |
| 4Sn |
| (n+1)2 |
| 2 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 4 |
(2)由1+
| 1 |
| 2an-1 |
| 1 | ||
n-
|
| 2n+1 |
| 2n-1 |
| 1 |
| 2a2-1 |
| 1 |
| 2a3-1 |
| 1 |
| 2an-1 |
| ||
| 2 |
解答:
(1)证明:∵
=
+
(n≥2,n∈N*),
∴
=
+
-
(n≥2,n∈N*).
∴
+
=
+
(n≥2,n∈N*).
∴
=
,
∴
=(
)2,
=(
)2,
…
=(
)2,
上式累乘,得:
=(
)2,
又a1=S1=1,∴4Sn+2(n+1)=(n+1)2,
两边同时除以(n+1)2,得
+
=1.
∵4Sn+2(n+1)=(n+1)2,
∴4Sn=(n+1)2-2(n+1)=n2-1,①
4Sn-1=(n-1)2-1,②
①-②,得4an=n2-(n-1)2=2n-1,
∴an=
n-
.
(2)证明:∵1+
=1+
=
,
∴(1+
)(1+
)…(1+
)
=
×
×
×…×
×
=
>
=
.
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n(n+1) |
∴
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 2Sn |
| (n+1)2 |
| 1 |
| n+1 |
| 2Sn-1 |
| n2 |
| 1 |
| n |
∴
| 2Sn+(n+1) |
| (n+1)2 |
| 2Sn-1+n |
| n2 |
∴
| 2Sn+(n+1) |
| 2Sn-1+n |
| n+1 |
| n |
| 2Sn-1+n |
| 2Sn-2+n-1 |
| n |
| n-1 |
…
| 2S2+3 |
| 2S1+2 |
| 3 |
| 2 |
上式累乘,得:
| 2Sn+(n+1) |
| 2S1 |
| n+1 |
| 2 |
又a1=S1=1,∴4Sn+2(n+1)=(n+1)2,
两边同时除以(n+1)2,得
| 4Sn |
| (n+1)2 |
| 2 |
| n+1 |
∵4Sn+2(n+1)=(n+1)2,
∴4Sn=(n+1)2-2(n+1)=n2-1,①
4Sn-1=(n-1)2-1,②
①-②,得4an=n2-(n-1)2=2n-1,
∴an=
| 1 |
| 2 |
| 1 |
| 4 |
(2)证明:∵1+
| 1 |
| 2an-1 |
| 1 | ||
n-
|
| 2n+1 |
| 2n-1 |
∴(1+
| 1 |
| 2a2-1 |
| 1 |
| 2a3-1 |
| 1 |
| 2an-1 |
=
| 5 |
| 3 |
| 7 |
| 5 |
| 9 |
| 7 |
| 2n-1 |
| 2n-2 |
| 2n+1 |
| 2n-1 |
=
| 2n+1 |
| 3 |
| ||||
| 2 |
| ||
| 2 |
点评:本题考查等式和不等式的证明,考查数列的通项公式的求法,解题时要认真审题,注意累乘法的合理运用.
练习册系列答案
相关题目
| 3 | -27 |
| A、3 | B、-3 | C、±3 | D、-9 |