题目内容

已知sinθ=2cosθ,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)若5cos(θ-φ)=3
5
cosφ,0<φ<
π
2
,求cosφ的值.
考点:同角三角函数基本关系的运用,两角和与差的余弦函数
专题:计算题,三角函数的求值
分析:(1)sinθ=2cosθ,与sin2θ+cos2θ=1联立求解;
(2)将5cos(θ-φ)=3
5
cosφ,利用两角和差三角函数公式求解,即可得出结论.
解答: 解:(1)∵sinθ=2cosθ,θ∈(0,
π
2
),sin2θ+cos2θ=1,
∴sinθ=
2
5
5
,cosθ=
5
5

(2)5cos(θ-φ)=3
5
cosφ,
∴5cosθcosφ+5sinθsinφ=3
5
cosφ,
5
cosφ+2
5
sinφ=3
5
cosφ,
∴tanφ=1,
∵0<φ<
π
2

∴cosφ=
2
2
点评:本题考查同角三角函数基本关系式,两角和差三角函数公式的应用.考查公式应用能力,运算求解能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网