题目内容
14.若实数x,y满足$\left\{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}\right.$,则z=2x-y的最小值为( )| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}\right.$作出可行域如图,![]()
化目标函数z=2x-y为y=2x-z,
由图可知,当直线y=2x-z过时A(0,1)时,z有最小值为:-1
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
4.方程$a=sin(2x+\frac{π}{3}),x∈[0,\frac{π}{2}]$上有解,则实数a的取值范围( )
| A. | [-1,1] | B. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | C. | $[-\frac{{\sqrt{3}}}{2},1]$ | D. | [0,1] |
5.“a=1”是“函数f(x)=a|x|+b,b∈R在区间[0,+∞)上为增函数”的( )
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
9.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)在一个周期内的部分对应值如下表:
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=f(x)+2sinx的最大值和最小值.
| x | $-\frac{π}{2}$ | 0 | $\frac{π}{6}$ | $\frac{π}{2}$ |
| f(x) | -1 | 1 | $\frac{1}{2}$ | -1 |
(Ⅱ)求函数g(x)=f(x)+2sinx的最大值和最小值.
3.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:
由于粗心,他算错了其中一个y值,则这个错误的数值时( )
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | -11 | -2 | 1 | -2 | -5 | … |
| A. | -11 | B. | -2 | C. | 1 | D. | -5 |