题目内容
4.方程$a=sin(2x+\frac{π}{3}),x∈[0,\frac{π}{2}]$上有解,则实数a的取值范围( )| A. | [-1,1] | B. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | C. | $[-\frac{{\sqrt{3}}}{2},1]$ | D. | [0,1] |
分析 由三角函数的性质可得sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],从而确定实数a的取值范围.
解答 解:∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
故选:C.
点评 本题考查了方程的根与函数的零点的关系应用及三角函数的应用.
练习册系列答案
相关题目
12.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分别表示甲、乙两名运动员这项测试成绩的平均数,s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分别表示甲、乙两名运动员这项测试成绩的方差,则有( )
| A. | ${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ | B. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$ | ||
| C. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$ | D. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ |
19.1337与382的最大公约数是( )
| A. | 191 | B. | 382 | C. | 201 | D. | 37 |