题目内容
等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)·…·(x-a8),则f′(0)=( )
A.212 B.29 C.28 D.26
A
[解析] f′(x)=(x-a1)(x-a2)·…·(x-a8)+x[(x-a1)(x-a2)·…·(x-a8)]′,
∴f′(0)=(0-a1)(0-a2)·…·(0-a8)=a1a2·…·a8=(a1·a8)4=84=212.
练习册系列答案
相关题目
题目内容
等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)·…·(x-a8),则f′(0)=( )
A.212 B.29 C.28 D.26
A
[解析] f′(x)=(x-a1)(x-a2)·…·(x-a8)+x[(x-a1)(x-a2)·…·(x-a8)]′,
∴f′(0)=(0-a1)(0-a2)·…·(0-a8)=a1a2·…·a8=(a1·a8)4=84=212.