题目内容
| A、 |
| B、 |
| C、 |
| D、 |
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:由正视图和侧视图分别是矩形和正三角形判断几何体是左右方向放置的正三棱柱,由俯视图的定义,最上边的棱的射影位于矩形的中间,且俯视图的宽为2,由此可得答案.
解答:
解:根据俯视图的定义,俯视图是从上到下的投影,
由正视图和侧视图分别是矩形和正三角形判断几何体是左右方向放置的正三棱柱,
最上边的棱的射影位于矩形的中间,且俯视图的宽为2.
故选D.
由正视图和侧视图分别是矩形和正三角形判断几何体是左右方向放置的正三棱柱,
最上边的棱的射影位于矩形的中间,且俯视图的宽为2.
故选D.
点评:考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.
练习册系列答案
相关题目
已知a=sin15°cos15°,b=cos2
-sin2
,c=
,则a,b,c的大小关系是( )
| π |
| 6 |
| π |
| 6 |
| tan30° |
| 1-tan230° |
| A、a<b<c |
| B、a>b>c |
| C、c>a>b |
| D、a<c<b |
曲线y=
在点P(1,1)处的切线方程( )
| 1 |
| x |
| A、x+y=2 | ||
B、y-1=-
| ||
C、y-1=
| ||
| D、x+y+z=2 |
方程x2+y2-2x+4y+1=0所表示的图形的面积是( )
| A、π | ||
| B、2π | ||
| C、4π | ||
D、
|
已知点P(a,b)是第二象限的点,那么它到直线x-y=0的距离是( )
A、
| ||||
| B、b-a | ||||
C、
| ||||
D、
|
已知sinx=3cosx,则sinxcosx的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|